Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms
نویسندگان
چکیده
Cell identity is specified in the early mammalian embryo by the generation of precursors for two cell lineages: the pluripotent inner cell mass and differentiating trophectoderm. Here we identify Angiomotin as a key regulator of this process. We show that the loss of Angiomotin, together with Angiomotin-like 2, leads to differentiation of inner cell mass cells and compromised peri-implantation development. We show that Angiomotin regulates localization of Yap, and Yap-binding motifs are required for full activity of Angiomotin. Importantly, we also show that Angiomotin function can compensate for the absence of Lats1/2 kinases, indicating the ability of Angiomotin to bypass the classical Hippo pathway for Yap regulation. In polarized outside cells, Angiomotin localizes apically, pointing to the importance of cell polarity in regulating Yap to promote differentiation. We propose that both Hippo pathway-dependent and Hippo pathway-independent mechanisms regulate Yap localization to set apart pluripotent and differentiated lineages in the pre-implantation mouse embryo.
منابع مشابه
Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos
BACKGROUND In preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst stage. The cell fate is controlled by cell position-dependent Hippo signaling, although the mechanisms underlying position-dependent Hippo signaling are unknown. RESULTS We show that a combination of cell polarity and cell-cell adhesion establis...
متن کاملMerlin and Angiomotin in Hippo-Yap Signaling
M. Oren and Y. Aylon (eds.), The Hippo Signaling Pathway and Cancer, DOI 10.1007/978-1-4614-6220-0_2, © Springer Science+Business Media New York 2013 Abstract Merlin, encoded by the NF2 tumor-suppressive gene, has been established through genetic studies in both Drosophila and mice as an important upstream regulator of the Hippo-Yap pathway. Recently, biochemical studies have identi fi ed Angio...
متن کاملHippo Pathway-independent Restriction of TAZ and YAP by Angiomotin*
The Hippo pathway restricts the activity of transcriptional co-activators TAZ and YAP by phosphorylating them for cytoplasmic sequestration or degradation. In this report, we describe an independent mechanism for the cell to restrict the activity of TAZ and YAP through interaction with angiomotin (Amot) and angiomotin-like 1 (AmotL1). Amot and AmotL1 were robustly co-immunoprecipitated with FLA...
متن کاملAngiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations
The evolutionarily conserved Hippo inhibitory pathway plays critical roles in tissue homeostasis and organ size control, while mutations affecting certain core components contribute to tumorigenesis. Here we demonstrate that proliferation of Hippo pathway mutant human tumor cells exhibiting high constitutive TEAD transcriptional activity was markedly inhibited by dominant negative TEAD4, which ...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کامل